US009338209B1

a2z United States Patent (10) Patent No.: US 9,338,209 B1
Begen et al. 45) Date of Patent: May 10, 2016
(54) USE OF METADATA FOR AIDING ADAPTIVE (56) References Cited
STREAMING CLIENTS

U.S. PATENT DOCUMENTS

(71) Applicant: CISCO TECHNOLOGY, INC., San 7835406 B2 112010 Oran etal.

Jose, CA (US) 8,806,050 B2* 8/2014 Chenetal. .o, 709/231
8,887,020 B2* 11/2014 Shokrollahi T14/752
(72) Inventors: Ali C. Begen, London (CA); Scott C. g’gég’;gg E%: 1%%8 }‘5‘ %lin et atlal ~~~~~ ;(7)3%%
. 958, atson et al. .. .
Labrozzi, Cary, NC (US) 2004/0128701 Al* 7/2004 Kaneko etal. .. 725/136
2013/0042015 Al* 2/2013 Begen HO4AN 19/46
(73) Assignee: CISCO TECHNOLOGY, INC., San 709/231
Jose, CA (US) ’ 2013/0064283 A1* 3/2013 Sun ...oooovcorcrn... HO4N 21/2343
375/240.01
. 2013/0091251 Al* 4/2013 Walkeretal. 709/219
(*) Notice: Subject to any disclaimer, the term of this 2013/0227106 Al* 82013 Grinshpun HO4W 4/18
patent is extended or adjusted under 35 709/223
U.S.C. 154(b) by 249 days. 2013/0227293 Al* 82013 Leddy ..ccococommorrnenrn. HO4L 9/32
713/176
21) Appl. No.: 13/868,595 * cited by examiner
pp M
(22) Tiled: Apr. 23,2013 Primary Examiner — Thomas Dailey
(74) Attorney, Agent, or Firm — Patent Capital Group
(51) Imt.ClL
GO6F 15/16 (2006.01) 7 ABSTRACT
HO4L 29/06 (2006.01) A method is. provideq in one e).(ample embgdiment and
HO4N 21/845 (2011.01) includes receiving media .from an input; gathertlng metadata
HO4N 21/61 (2011.01) from a plurahty.of media stream representations that are
(52) US.Cl provided by the input; creating one or more metadata seg-
CPC ' HO4L 65/601 (2013.01): HOAN 21/6125 ments corresponding to the plurality of media stream repre-
"""""] (01); ’ sentations in order to generate a metadata track; and making
(2013.01); HO4N 21/8455 (2013.01); HO4N at least a portion of the metadata track available to a client
21/8456 (2013.01) device, where the portion of the metadata track is provided
(58) Field of Classification Search separate from a manifest file.
None
See application file for complete search history. 20 Claims, 6 Drawing Sheets
______ _,| MANIFEST "7 777" STANDARD
50 :_ FILE HAS CLIENT
Y !
45 ENCAPSULATOR ENHANCED
5] HAS CLIENT
QUALITY
INFORMATION l @7_> VIDEO 1 AD?_F(;ZI‘EION
TRANSCODER MODULE
17 QQELAY > VIDEO? S
QUALITY 19
INFORMATION > VIDEO3 MEMORY
ELEMENT
N
30a
METADATA
METADATA
> METADATA FOR ALL PROCESSCR
___________ 31a
I CONSTANT QUALITY 1 Y
|- FUTURE SEGMENT QUALITIES I 18a
- FUTURE SEGMENT SIZES
L e J
MEMORY
ELEMENT PROCESSOR - -—————— 1
I DELAY MEDIA SO I
/ / | METADATA AVAILABLE |
30b 31b L FOR FUTURE SEGMENTSJ

US 9,338,209 B1

Sheet 1 of 6

May 10, 2016

U.S. Patent

28l
N

961
N

JINAON 21907
NOLLV1dvay

IN3170 SYH
(d30NVHN3

961
N

JTNAON J1901
NOILV.LdYdY

IN3MO SVH
(J3ONVHN3

300N
ALVIAIWHILINI

I "DId

(
a8l

e6l
N

JINAON 21907
NOLLV1dvay

(
qsl

IN3170 SYH
(d30NVHN3

(
egl

AN
MO3N31LLOY

9l
MHOMLIN

N

3dON

vl

JOVHOLS
VIAIW

acl
/

ERE!

ALVIAIWHILNI

N
egl

1S34INVIN
HIANYTS

N
qazl

Bgl
/

ERE!

1S34INVIA
HIAAY3S

1l
YIAOOSNVHL

N
egl

US 9,338,209 B1

Sheet 2 of 6

May 10, 2016

U.S. Patent

¢ DOIA
ﬁwhzuzommmm:h:mmo¢ 1 qLe qo¢
TIaVIVAY VLYAV.LIW) /
I
L 0S VIQaW Av13a i NaNa
|||||||||||| HOSSIO0Nd SONAN
egl _ﬂ $371S INIWO3S FHNLNA - |
| STLTVND LNINO3S JuNLNA -
N L ALITYIO LNVLSNOO |
= I o
N\ SWYIYLS _ <
HOSSIO0Nd TIv 404 VIVOV.IIN < wamwﬂwmw <
VLVAV.LIN
eo¢
\
INIW313 Ge
AHOWAW ¢ 0FAIN <— zwnmﬁwmwz
e6l
N -« zo3ain <-—+—Caviaa
IINCOW
21901
NOLLYLdvav 1 o3ain <+Caviad
INAMD SYH
T3ONVHN HOLYINSAYONT
—
_
AN SWH EQIE N 0G
‘I ||||||
QUVONVLS e | 1S34INYIN

NOILVNHOANI

r ALYND

m
¥3AOOSNVAL

N
&

US 9,338,209 B1

Sheet 3 of 6

May 10, 2016

U.S. Patent

V¢ DIA
€ 03aIN m VLVaVLIN Y||
[zoaainwyod - s |
INTTO | rzzoﬁéﬁu&‘ Z03AIN - ([vivaviaw wf
_ [[
| O3AIA - (vivaviaw uf
HOLVYINSAYON3
/
09

US 9,338,209 B1

Sheet 4 of 6

May 10, 2016

U.S. Patent

IN3MO

€ 03dIA

[SWvadlS T

| d04 V1VAV.LIW

T ¢ 03dIA

I O3dIA

d¢ DIA

SWVYIYLS TV ¥O4 QFHIHLVO
V1VAVL3IW ILNN LNdLNO

WVIYHLS 40 ONIMOO1d

V.ivaviaw

A

A

)

V.ivaviaw

/ /

V.ivaviaw

HO1VINSdVON3

~_
G9

US 9,338,209 B1

Sheet 5 of 6

May 10, 2016

U.S. Patent

SIN3IWS3S (AV) VIQIN 3¥043g

SLINIWO3S FHNLN HO4 F18VIIVAY @ “

V1VavidN OS a3dav Aviad]

SWYINIS TV |« m VIVAYLIN T
Y04 VLVaVLIW
HOL340LQIaN | [
«—{ vivaviaw T VLVaY.LIN
_ [
«—{ vivaviaw T
IN3ITD SYH ¢ 03aIA
Q3ONVHNI
’ 2 03aIA
L 03aIA
IN3ITD SVH
QYVaNYLS

¢ DIA

1 " $371S INTWDIS JuNLNA |
: SAILIVND INIWDHIS IHNLNA - |
(371dNvX3)

“I V1vav1i3n ALvnd ._.z<._.wzooln

A

V.VOYLIW wn

A

VIVOVLIN J+——

A

A Y O

V1vaviaw

AV13d .

AV13d

AV13d

el

HO1VINSdVON3

US 9,338,209 B1

Sheet 6 of 6

May 10, 2016

U.S. Patent

v "DIA
(a3)

JANSNOD ATLNIND3ISEANS ATNOHS LI NVIHLS O3dIA
HOIHM 1NOAV NOISIOFA ¥ SIHVYIN LNTITIO 0IONVHNA
JHL ‘NOILYWHOANI LYHL NO d3SV8E MOVYL V1Vav.1IN
JH1 40 INJWOIS V STANSNOI NIVOY LN3ITD
(J30NVHN3 3HL H3IHM 4713S 11 S1V3d3H 3T0AD SIHL

_~0L¥

!

(MOVYL VLVAVLIW FHL A9 GALSTDONS SYM LVHL
OIH1IN ALITYND JNOS NO a3Sva) Z ¥IGWNN 03AIA
ONIAIFO3Y NI934 01 S13379 IN3ITO A3ONVYHN3I 3HL

_~801

»

*013 ‘SYOVHL O3AIA FHL 40 TVHIAIS ‘SHOVYL 03dIA
JHL 40 INO HO4 NOILYWHOANI ALMYND 3AIAONd
NVO LNJWO3S 1SHI4 IHL "LN3ITO IHL A9 d3HOL34
SIMOVYHL V1VAVLIN 3HL 40 INJWO3S LSHIdV

~-90F

»

HOVHL VIVAYL3IW FHL HONOYHL 438S330V 34
NVO NOILYWHOANI ALITYND LYHL (SONV.LSHIANN
1SY31 1V ¥0) SAI4ILNIAI INIITD GIONVHNI NV

70V

»

114 LSTINVIN V (SSTDDV HO) INNSNOD A1NOM

2oy

IN3MNO V ‘NOLLIANOD 3LVLS TVILINI NV NI
1dvIS v/
00¥

US 9,338,209 B1

1
USE OF METADATA FOR AIDING ADAPTIVE
STREAMING CLIENTS

TECHNICAL FIELD

This disclosure relates in general to the field of communi-
cations and, more particularly, to a system, an apparatus, and
a method for using metadata in streaming environments.

BACKGROUND

End users have more media and communications choices
than ever before. A number of prominent technological trends
are currently afoot (e.g., more computing devices, more
online video services, higher Internet access speeds), and
these trends are changing the media delivery landscape. Sepa-
rately, these trends are pushing the limits of capacity and, may
further degrade the performance of video, where such degra-
dation creates frustration amongst end users, content provid-
ers, and service providers. In many instances, the video data
sought for delivery may be dropped, fragmented, delayed, or
simply unavailable to certain end users.

Adaptive Streaming is a technique used in streaming mul-
timedia over computer networks. While in the past, most
video streaming technologies used either file download, pro-
gressive download, or custom streaming protocols, most of
today’s adaptive streaming technologies are based on hyper-
text transfer protocol (HTTP). These technologies are
designed to work efficiently over large distributed HTTP
networks such as the Internet.

HTTP-based Adaptive Streaming (HAS) operates by
tracking metrics such as a user’s bandwidth and CPU capac-
ity, and then selecting an appropriate representation (e.g.,
bandwidth and resolution) among the available options to
stream. Typically, HAS would leverage the use of a constant
bitrate (CBR) encoder that can encode a single source video
at multiple bitrates and resolutions (e.g., representations).
The player client can switch among the different representa-
tions depending on available resources. Ideally, the result of
these activities is little buffering, fast start times, and good
video quality experience for both high-bandwidth and low-
bandwidth connections.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 is a simplified block diagram of a communication
system for using metadata to aid in adaptive streaming envi-
ronments in accordance with one embodiment of the present
disclosure;

FIG. 2 is a simplified schematic diagram illustrating an
example use of metadata for aiding one or more clients in
accordance with the present disclosure;

FIGS. 3A-3B are simplified block diagrams illustrating
example metadata tools associated with the present disclo-
sure;

FIG. 3C is a simplified block diagram illustrating a pos-
sible alternative embodiment associated with the present dis-
closure; and

FIG. 4 is a simplified flowchart illustrating potential opera-
tions associated with the communication system in accor-
dance with certain embodiments of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

A method is provided in one example embodiment and
includes receiving media from an input. The input can be
from virtually any suitable source (e.g., a server, a cache, a
database, etc.). The method also includes gathering metadata
from a plurality of media stream representations that are
provided by the input. The media stream representations
include any combination of video, audio, multimedia, etc.
The method also includes creating one or more metadata
segments corresponding to the plurality of media stream rep-
resentations in order to generate a metadata track. The ‘seg-
ment’ could include any suitable data, content, etc., where the
segment can have any suitable encoding bitrate. The method
also includes making at least a portion of the metadata track
available to a client device, wherein the portion of the meta-
data track is provided separate from a manifest file.

Example Embodiments

Turning to FIG. 1, FIG. 1 is a simplified block diagram of
a communication system 10 configured for using metadata
tracks, for example, in aiding a plurality of clients in accor-
dance with one embodiment of the present disclosure. Com-
munication system 10 may include a plurality of servers
12a-b, a media storage 14, a network 16, a transcoder 17, a
plurality of enhanced hypertext transfer protocol (HTTP)-
based Adaptive Streaming (HAS) clients 184a-c, and a plural-
ity of intermediate nodes 15a-6. Each HAS client 18a-c may
include a respective adaptation logic module 19a-¢. Note that
the originating video source may be a transcoder that takes a
single encoded source and transcodes it into multiple repre-
sentations (e.g., bitrates and resolutions), or it could be a
“Primary” encoder that takes an original non-encoded video
source and directly produces the multiple representations.
Therefore, it should be understood that transcoder 17 is rep-
resentative of any type of multi-rate encoder, transcoder, etc.

Servers 12a-b can be configured to deliver requested con-
tent to HAS clients 18a-c. The content may include any
suitable information and/or data that can propagate in the
network (e.g., video, audio, media, any type of streaming
information, etc.). Each server 12a-b may include a respec-
tive manifest file 13a¢-b. Certain content may be stored in
media storage 14, which can be located anywhere in the
network. Media storage 14 may be a part of any Web server,
logically connected to one of servers 12a-b, suitably accessed
using network 16, etc. In general, communication system 10
can be configured to provide downloading and streaming
capabilities associated with various data services. Communi-
cation system 10 can also offer the ability to manage content
for mixed-media offerings, which may combine video, audio,
games, applications, channels, and programs into digital
media bundles.

In accordance with certain techniques of the present dis-
closure, the architecture of FIG. 1 can use an additional meta-
data track to carry a collection of metadata that relates to
multiple media segment representations (e.g., video streams).
This additional metadata track is to be provided separate from
the manifest file and, further, this additional metadata track
would otherwise not be available to the clients. Such a frame-
work could allow, for example, additional metadata from
multiple media representations to be used to improve stream-
ing capabilities (e.g., constant-quality (CQ) streaming).
Additionally, such an architecture could allow the system to
achieve enhanced performance without moditying (and sub-

US 9,338,209 B1

3

sequently bloating) the client manifest file. Moreover, such a
solution can be provided without adding new boxes to media
segments or modifying the media segments in a non-back-
wards-compatible manner: boxes that could result in back-
wards incompatibility issues, as well as reducing the effi-
ciency of the media segment creation.

Before detailing the metadata track creation in more
explicit terms, it is important to understand some of the band-
width challenges encountered in a network that includes HAS
clients. The following foundational information may be
viewed as a basis from which the present disclosure may be
properly explained. Adaptive streaming video systems make
use of multi-rate video encoding and an elastic IP transport
protocol suite (typically hypertext transfer protocol/transmis-
sion control protocol/Internet protocol (HTTP/TCP/IP), but
could include other transports such as HI'TP/SPDY/IP, etc.)
to deliver high-quality streaming video to a multitude of
simultaneous users under widely varying network conditions.
These systems are typically employed for “over-the-top”
video services, which accommodate varying quality of ser-
vice over network paths.

In adaptive streaming, the source video is encoded such
that the same content is available for streaming at a number of
different rates (this can be achieved via either multi-rate cod-
ing, such as H.264/AVC, or layered coding, such as H.264
SVC). The video can be divided into “chunks” of one or more
group-of-pictures (GOP) (e.g., typically two (2) to ten (10)
seconds of length). HAS clients can access chunks stored on
servers (or produced in near real-time for live streaming)
using a Web paradigm (e.g., HI'TP GET operations over a
TCP/IP transport), and they depend on the reliability, conges-
tion control, and flow control features of TCP/IP for data
delivery. HAS clients can indirectly observe the performance
of' the fetch operations by monitoring the delivery rate and/or
the fill level of their buffers and, further, either upshift to a
higher encoding rate to obtain better quality when bandwidth
is available, or downshift in order to avoid buffer underruns
and the consequent video stalls when available bandwidth
decreases, or stay at the same rate if available bandwidth does
not change. Compared to inelastic systems such as classic
cable TV or broadcast services, adaptive streaming systems
use significantly larger amounts of buffering to absorb the
effects of varying bandwidth from the network.

In atypical scenario, HAS clients would fetch content from
a network server in segments. Each segment can contain a
portion of a program, typically comprising a few seconds of
program content. [Note that the terms ‘segment’, ‘fragment’
and ‘chunk’ are used interchangeably in this disclosure.] For
each portion of the program, there are different segments
available with higher and with lower encoding bitrates: seg-
ments at the higher encoding rates require more storage and
more transmission bandwidth than the segments at the lower
encoding rates. HAS clients adapt to changing network con-
ditions by selecting higher or lower encoding rates for each
segment requested, requesting segments from the higher
encoding rates when more network bandwidth is available
(and/or the client buffer is close to full), and requesting seg-
ments from the lower encoding rates when less network band-
width is available (and/or the client buffer is close to empty).

In the case of metadata, providing more information to a
plurality of HAS clients is a worthwhile objective. However,
where and when to provide that information proves challeng-
ing in streaming environments. More generally, adaptive
streaming over HTTP has many forms and these forms uni-
versally include an instantiation of a manifest file. For
example, before the streaming session starts, a streaming
client first fetches a file, called the manifest (or its equivalent

25

30

40

45

55

4

‘Media Presentation Description” (MPD) in Dynamic Adap-
tive Streaming over HTTP (DASH) terminology). In the
DASH standard, the MPD describes which representations,
segments, and sub-segments are available from a given server
(or a cache). Certain information regarding representations
(e.g., resolution, bitrate, codec, relative quality ranking, etc.)
and segments (e.g., duration, addressing scheme) can exist in
the manifest file. Further information can be encoded into
segment and/or subsegment indexing boxes, where this infor-
mation helps the client to locate the stream access points (e.g.,
akin to Instantaneous Decoder Refresh (IDR) frames) in the
bitstream for a relatively seamless switching among different
representations. These boxes can be prefixed to the frag-
ments, or they can be downloaded separately from the server.

In the DASH framework, each segment is generally a
single physical file on the server. In the simplest mode, the
encapsulator can create short segments (e.g., two seconds)
and then post them as separate files to the server (for access by
the client). If constant-bitrate (CBR) encoding is used, seg-
ment sizes can be easily computed so that the client under-
stands how many bits it will have to transfer for each request.
However, due to CBR encoding, the quality of consecutive
segments would likely vary and there is currently no signaling
of'the quality information (of a segment level) available to the
client. In the case of variable-bitrate (VBR) protocols being
used, the segment sizes will vary considerably and the client
would have no way to know the segment sizes before initiat-
ing a request (and then receiving a response from the server).

Alternatively, an entire content piece (e.g., amovie) can be
provided as one full segment (i.e., one file) on the server. The
encapsulator can produce indices to signal the access point
locations to the client. By looking at this information, the
client can form the byte-range requests and, by virtue of these
byte ranges, the exact size of the fetch is therefore known to
the client. But again, the quality information is still not avail-
able to the client. Moreover, a constant quality streaming
scheme needs certain additional information (referred to as
metadata herein) that is not carried inside the manifest file (or
indexing boxes). Some systems try to bluntly feed the meta-
data to the client themselves; however, such a solution is
neither efficient nor scalable.

FIG. 2 is a simplified block diagram associated with using
ametadata track for aiding clients in adaptive streaming envi-
ronments. FIG. 2 includes an encapsulator (also commonly
called packager) 50, which further includes an instance of
metadata collection 35 that is associated with a number of
video streams (Video #1, Video #2, Video #3). In addition,
FIG. 2 illustrates a standard HAS client that receives Video #1
and also illustrates an enhanced HAS client 184 that is receiv-
ing Video #2, along with a metadata track that is being pro-
vided via metadata collection 35. Metadata collection 35 may
include quality information that may be associated with any
appropriate characteristics that could be of interest to a given
client. For example, metadata collection 35 may include
information about future segment qualities, future segment
sizes, etc. HAS client 18a and encapsulator 50 may include a
respective processor 31a-b and a respective memory element
30a-b for facilitating the operations discussed herein.

FIG. 2 also illustrates a set of quality information 45, which
could include any suitable information, as discussed herein.
In operation of one example flow, quality information 45 may
be provided as an input to encapsulator 50 (as is being
shown), where this information would be provisioned in the
actual metadata track, as it is generated. Once the client
begins watching a particular video, it can also begin receiving
this particular metadata for the particular video channel. Not
only does such a protocol preserve the integrity of the mani-

US 9,338,209 B1

5

fest file, it also empowers enhanced clients to receive this
quality information (e.g., per-segment) and, thereby, allows
the client to use it to improve the user experience.

Note that the adaptive streaming framework, fundamen-
tally, operates on an expected segment size, duration, etc., as
the client is consuming video. This would allow, for example,
a client to understand how much video it could consume
per-second interval. This further allows the client to under-
stand which segment to which it should systematically tran-
sition. The underlying heuristics (e.g., associated with how
clients adapt to time-varying conditions) should be suitably
communicated during streaming activities. Ideally, metadata
should be consumed by the client in anticipation of future
video data (e.g., two video segments ahead) and, therefore,
allow the client to react accordingly. For example, the client
could use this metadata to make intelligent decisions con-
cerning rate control (e.g., maintaining a certain quality by
shifting to a lower bitstream rate), adaptation logic, etc. This
could improve overall throughput, where clients are not con-
suming unnecessary bits to achieve a certain quality level.
Hence, clients could (in the aggregate) consume less band-
width as a result of this optimization. In certain cases, the
system can potentially delay at least a portion of media asso-
ciated with the video streams, as the corresponding metadata
is made available ahead of time, before the video stream is
consumed by the client. Again, this would allow the clients to
intelligently consume media at a future time interval.

Turning briefly to FIGS. 3A-3B, these illustrations can be
used to help explain one or more possible metadata provi-
sioning mechanisms for use in streaming environments. More
specifically, FIG. 3A is a simplified schematic diagram 60
illustrating example activity associated with a streaming cli-
ent that receives video from an encapsulator. Note that a
typical streaming client only fetches a single stream. In this
particular example of FIG. 3A, metadata can be added to any
of'these streams (e.g., audio streams or video streams) to offer
quality information for any particular stream. Hence, injected
into the output of this example is metadata that could be
associated with quality information. Obviously, this solution
has a number of inherent problems, not the least of which is
that all clients are now consuming new and unexpected data
for which they may not have been prepared. Hence, one
vulnerable assumption in such a model is that the clients
would perform without breaking in any way (i.e., that there
would be no disruption in the streaming activities on the client
side).

FIG. 3B illustrates another simplified schematic diagram
65 associated with the blocking of stream output until meta-
data is gathered for all streams. Similar to the framework of
FIG. 3 A, this particular architecture includes an encapsulator,
multiple video streams, and a client. In this particular
example, within the packager, metadata could be collected
and then placed into the output of all the streams. For
example, the metadata for Video #1 can be passed to Video #2,
Video #3, the metadata for Video #2 can be passed to Video
#1, Video #3, and so forth. Each ofthe clients would then have
all metadata for all the streams, irrespective of whether or not
the clients would understand this new metadata, be interested
in this new metadata, etc. This possible solution suffers from
a number of shortcomings. For example, at a minimum, a
synchronization algorithm should be employed in order to
reconcile any inconsistencies amongst the streams.

Referring back to FIG. 2, FIG. 2 can illustrate how a single
metadata track is created by encapsulator 50, which is able to
collect metadata for all the streams that are flowing through
the packager. In such a case, no video streams would experi-
ence an interruption. The metadata that is collected can con-

30

40

45

6

tain all the metadata for all the streams. The enhanced clients
would consume this new metadata track, whereas the stan-
dard clients would not consume this new metadata track (and
remain fully operational).

In terms of its approach, the system of FIG. 2 cannot
arbitrarily define new attributes (or boxes) to publish the
metadata because the system seeks to minimize inconsisten-
cies (e.g., reduce the chances of breaking existing frame-
works associated with clients, along with maximizing any
backwards compatibility with standard clients). Note that
even if the system bluntly added the necessary metadata to a
new box for the media segment, such information would have
to cover all representations, and not simply the representation
of'a given media segment itself, which could introduce size-
related issues. Such an approach would also introduce effi-
ciency problems for a given packager, which would be forced
to centralize and serialize the gathering of such metadata prior
to publishing a given media fragment.

In contrast to these flawed approaches, the system of the
present disclosure can publish essential metadata in a meta-
data stream, where enhanced clients could simply fetch this
information just like any other media stream. This fetching
could occur in parallel to the fetching of the audio/video
streams. By using a separate metadata track, the system
would avoid adding additional overhead to the manifest file or
the media fragments. This would ensure that the manifest size
remains small and the media segments remain unmodified.
Additionally, standard clients that are not capable of benefit-
ing from the additional metadata would not fetch this track
and, instead, run their typical decision algorithms. This sim-
plified approach avoids additional hooks that would other-
wise be positioned in the manifest file. In one particular
implementation, the framework can define the wire format for
the metadata track (e.g., similar to segment index boxes). In a
simplified example, the architecture can provide size and
quality information per-segment in the metadata track.

In operation, a single metadata stream can be used in which
an encapsulation component gathers necessary metadata
from all video stream representations, and subsequently cre-
ates the metadata segments for the streams. This could avoid
blocking the regular production of segments for media rep-
resentations, which would have occurred if the metadata were
embedded in the media segments themselves. Alternatively,
an adaptation set of discrete metadata streams could be pro-
duced to further avoid the need to collectively gather all
representation metadata together, prior to metadata segment
creation. It should be noted that there is a slight burden on the
client in making a multitude of metadata segment requests to
discover the quality attributes of the various media represen-
tations.

Itshould also be noted that the encapsulator can modify the
metadata track to provide guidance to the client (e.g., based
on congestion in the network). This could offer a type of rule
management, where the metadata track (after modification)
would trigger some specific behavior on the client. For
example, the modified metadata track can simply relay to the
client that certain resources have become limited and, there-
fore, the client should adjust its adaptation logic. In a particu-
lar case, the modified metadata track could dictate that Video
#2 is unavailable to the client for a certain period of time.

FIG. 3C is a simplified schematic diagram 70 illustrating
one potential alternative embodiment to the architecture of
FIG. 2. More specifically, the example implementation of
FIG. 3C reflects the situation in which multiple metadata
tracks can be fetched, as opposed to a single metadata track,
as shown in FIG. 2. Note that such a solution can involve
increased overhead, where the enhanced client would have to

US 9,338,209 B1

7

fetch all three of these metadata tracks (for Video #1, Video
#2, Video #3), as it is consuming video.

FIG. 4 is a simplified flowchart 400 illustrating one pos-
sible set of example activities associated with the present
disclosure. In an initial state condition, a client would con-
sume (or access) a manifest file at 402. The actual manifest
file could be coming from an origin server, or it could have
been cached somewhere in the network. The manifest can
include an enumeration of an adaptation set of video profiles
(i.e., video streams) available for the client (e.g., Video #1,
Video #2, Video #3, etc.). In addition, the manifest file could
include any information that would help the client to identify
a particular metadata track associated with a particular video
stream.

Hence, the manifest file describes to the client the media
that is available for access. Stated in different terms, the
manifest file can advertise which video tracks are available
for access by request from the client. In this particular
example, part of this advertising can include advertising the
metadata track described herein. A standard client would
generally ignore this metadata track.

In 404, an enhanced client identifies (or at least under-
stands) that quality information can be accessed through the
metadata track. In certain embodiments, the encapsulator can
identify size metrics based on the input stream it receives. The
quality metrics could be retrieved upstream (e.g., already
provided as part of the stream, provided to the transcoder, or
provided further upstream, for example). In certain cases, the
encapsulator could perform processing operations in order to
produce this quality information itself.

The enhanced client can use the metadata track to enhance
its adaptation logic. Note that the term ‘enhanced client’
simply connotes a client that has the intelligence to identify/
understand the metadata track, or at least anticipate receiving
the metadata track. At 406, a first segment of the metadata
track is fetched by the client. The first segment can provide
quality information for one of the video tracks, several of the
video tracks, etc. In this particular example, and for purposes
of'illustration only, the enhanced client elects to begin receiv-
ing Video #2 (based on some quality metric that was sug-
gested by the metadata track) at 408. At 410, this cyclerepeats
itself where the enhanced client again consumes a segment of
the metadata track. Based on that information, the enhanced
client makes a decision about which video stream it should
subsequently consume. This pattern would repeat itself, as the
enhanced client is using the metadata to tell itself which video
it should consume. This stands in contrast to common adap-
tive streaming practice, where adaptation logic is simply
based on the existing available bandwidth and available rep-
resentations but not the metadata. This bandwidth consump-
tion would typically be estimated by the last one or more
segments that the client received.

Referring briefly back to certain internal structure that
could be used to accomplish the teachings of present disclo-
sure, HAS clients 18a-c can be associated with devices, cus-
tomers, or end users wishing to receive data or content in
communication system 10 via some network. The terms HAS
client' and ‘client device’ are inclusive of any devices used to
initiate a communication, such as any type of receiver, a
computer, a set-top box, an Internet radio device (IRD), a cell
phone, a smartphone, a laptop, a tablet, a personal digital
assistant (PDA), a Google Android™, an iPhone™, an
iPad™, a Microsoft Surface™, or any other device, compo-
nent, element, endpoint, or object capable of initiating voice,
audio, video, media, or data exchanges within communica-
tion system 10. HAS clients 18a-c may also be inclusive of a
suitable interface to the human user, such as a display, a

10

15

20

25

30

35

40

45

50

55

60

65

8

keyboard, a touchpad, a remote control, or any other terminal
equipment. HAS clients 18a-c may also be any device that
seeks to initiate a communication on behalf of another entity
or element, such as a program, a database, or any other com-
ponent, device, element, or object capable of initiating an
exchange within communication system 10. Data, as used
herein in this document, refers to any type of numeric, voice,
video, media, audio, or script data, or any type of source or
object code, or any other suitable information in any appro-
priate format that may be communicated from one point to
another.

Transcoder 17 (or a multi-bitrate encoder) is a network
element configured for performing one or more encoding
operations. For example, transcoder 17 can be configured to
perform direct digital-to-digital data conversion of one
encoding to another (e.g., such as for movie data files or audio
files). This is typically done in cases where a target device (or
workflow) does not support the format, or has a limited stor-
age capacity that requires a reduced file size. In other cases,
transcoder 17 is configured to convert incompatible or obso-
lete data to a better-supported or more modern format.

Network 16 represents a series of points or nodes of inter-
connected communication paths for receiving and transmit-
ting packets of information that propagate through commu-
nication system 10. Network 16 offers a communicative
interface between sources and/or hosts, and may be any local
area network (LAN), wireless local area network (WLAN),
metropolitan area network (MAN), Intranet, Extranet, WAN,
virtual private network (VPN), or any other appropriate archi-
tecture or system that facilitates communications in a net-
work environment. A network can comprise any number of
hardware or software elements coupled to (and in communi-
cation with) each other through a communications medium.

Encapsulator 50 is a network element that can be used for
metadata collection in accordance with the teachings of the
present disclosure. Encapsulator 50 can also be referred to as
a ‘packager’ at described herein. Encapsulator 50 may be
provisioned within transcoder 17, provided in a Web server,
provided in any suitable cache, or provided in any other
suitable network element in the network. Encapsulator 50
may receive any suitable input from an upstream or a down-
stream resource.

In one particular instance, the architecture of the present
disclosure can be associated with a service provider digital
subscriber line (DSL) deployment. In other examples, the
architecture of the present disclosure would be equally appli-
cable to other communication environments, such as an enter-
prise wide area network (WAN) deployment, cable scenarios,
broadband generally, fixed wireless instances, fiber-to-the-x
(FTTx), which is a generic term for any broadband network
architecture that uses optical fiber in last-mile architectures,
and data over cable service interface specification (DOCSIS)
cable television (CATV). The architecture can also operate in
junction with any 3G/4G/LTE cellular wireless and WiFi/
WiMAX environments. The architecture of the present dis-
closure may include a configuration capable of transmission
control protocol/internet protocol (TCP/IP) communications
for the transmission and/or reception of packets in a network.

In more general terms, HAS clients 18a-c, transcoder 17,
encapsulator 50, and servers 12a-b are network elements that
can facilitate the metadata provisioning activities discussed
herein. As used herein in this Specification, the term ‘network
element’ is meant to encompass any of the aforementioned
elements, as well as routers, switches, cable boxes, gateways,
bridges, load balancers, firewalls, inline service nodes, prox-
ies, servers, processors, modules, or any other suitable device,
component, element, proprietary appliance, or object oper-

US 9,338,209 B1

9

able to exchange information in a network environment.
These network elements may include any suitable hardware,
software, components, modules, interfaces, or objects that
facilitate the operations thereof. This may be inclusive of
appropriate algorithms and communication protocols that
allow for the effective exchange of data or information.

In one implementation, HAS clients 18a-c, transcoder 17,
encapsulator 50, and/or servers 12a-b include software to
achieve (or to foster) the metadata provisioning activities
discussed herein. This could include the implementation of
instances of adaptation logic module 19a-c¢, metadata collec-
tion 35, and/or any other suitable element that would foster
the activities discussed herein. Additionally, each of these
elements can have an internal structure (e.g., a processor, a
memory element, etc.) to facilitate some of the operations
described herein. In other embodiments, these metadata pro-
visioning activities may be executed externally to these ele-
ments, or included in some other network element to achieve
the intended functionality. Alternatively, HAS clients 18a-c,
transcoder 17, encapsulator 50, and/or servers 12a-b may
include software (or reciprocating software) that can coordi-
nate with other network elements in order to achieve the
metadata provisioning activities described herein. In still
other embodiments, one or several devices may include any
suitable algorithms, hardware, software, components, mod-
ules, interfaces, or objects that facilitate the operations
thereof.

In certain embodiments, the metadata provisioning tech-
niques of the present disclosure can be incorporated into a
proxy server, Web proxy, cache, content delivery network
(CDN), etc. This could involve, for example, instances of
adaptation logic module 194-c, metadata collection 35, etc.
being provisioned in these elements. Alternatively, simple
messaging or signaling can be exchanged between an HAS
client and these elements in order to carry out the activities
discussed herein. In operation, a CDN can provide band-
width-efficient delivery of content to HAS clients 18a-c or
other endpoints, including set-top boxes, personal computers,
game consoles, smartphones, tablet devices, iPads™
iPhones™, Google Droids™, Microsoft Surfaces™, cus-
tomer premises equipment, or any other suitable endpoint.
Note that servers 12a-b (previously identified in FIG. 1) may
also be integrated with or coupled to an edge cache, gateway,
CDN, or any other network element. In certain embodiments,
servers 12a-b may be integrated with customer premises
equipment (CPE), such as a residential gateway (RG).

As identified previously, a network element can include
software (e.g., adaptation logic module 19a-c, metadata col-
lection 35, etc.) to achieve the metadata provisioning opera-
tions, as outlined herein in this document. In certain example
implementations, the metadata provisioning functions out-
lined herein may be implemented by logic encoded in one or
more non-transitory, tangible media (e.g., embedded logic
provided in an application specific integrated circuit [ASIC],
digital signal processor [DSP] instructions, software [poten-
tially inclusive of object code and source code] to be executed
by a processor [processors shown in FIG. 2], or other similar
machine, etc.). In some of these instances, a memory element
[memories shown in FIG. 2] can store data used for the
operations described herein. This includes the memory ele-
ment being able to store instructions (e.g., software, code,
etc.) that are executed to carry out the activities described in
this Specification. The processor can execute any type of
instructions associated with the data to achieve the operations
detailed herein in this Specification. In one example, the
processor could transform an element or an article (e.g., data)
from one state or thing to another state or thing. In another

10

15

20

25

30

35

40

45

50

55

60

65

10

example, the activities outlined herein may be implemented
with fixed logic or programmable logic (e.g., software/com-
puter instructions executed by the processor) and the ele-
ments identified herein could be some type of a program-
mable processor, programmable digital logic (e.g., a field
programmable gate array [FPGA], an erasable programmable
read only memory (EPROM), an electrically erasable pro-
grammable ROM (EEPROM)) or an ASIC that includes digi-
tal logic, software, code, electronic instructions, or any suit-
able combination thereof.

Any ofthese elements (e.g., the network elements, etc.) can
include memory elements for storing information to be used
in achieving the metadata provisioning activities, as outlined
herein. Additionally, each of these devices may include a
processor that can execute software or an algorithm to per-
form the metadata provisioning activities as discussed in this
Specification. These devices may further keep information in
any suitable memory element [random access memory
(RAM), ROM, EPROM, EEPROM, ASIC, etc.], software,
hardware, or in any other suitable component, device, ele-
ment, or object where appropriate and based on particular
needs. Any of the memory items discussed herein should be
construed as being encompassed within the broad term
‘memory element.” Similarly, any of the potential processing
elements, modules, and machines described in this Specifi-
cation should be construed as being encompassed within the
broad term ‘processor.” Each of the network elements can also
include suitable interfaces for receiving, transmitting, and/or
otherwise communicating data or information in a network
environment.

Note that while the preceding descriptions have addressed
certain streaming management techniques, it is imperative to
note that the present disclosure can be applicable to various
protocols and technologies (e.g., Microsoft Smooth™
Streaming (HSS™), Apple HTTP Live Streaming (HLS™),
Adobe Zeri™ (HDS), etc.). In addition, one application that
could be used in conjunction with the present disclosure is
DASH, which is a multimedia streaming technology that
could readily benefit from the techniques of the present dis-
closure. DASH is an adaptive streaming technology, where a
multimedia file is partitioned into one or more segments and
delivered to a client typically using HTTP. A media presen-
tation description (MPD) can be used to describe segment
information (e.g., timing, URL, media characteristics such as
video resolution and bitrates). Segments can contain any
media data and could be rather large. DASH is codec agnos-
tic. One or more representations (i.e., versions at different
resolutions or bitrates) of multimedia files are typically avail-
able, and selection can be made based on network conditions,
device capabilities, and user preferences to effectively enable
adaptive streaming. In these cases, communication system 10
could perform appropriate metadata provisioning based on
the individual needs of clients, servers, etc.

Additionally, it should be noted that with the examples
provided above, interaction may be described in terms of two,
three, or four network elements. However, this has been done
for purposes of clarity and example only. In certain cases, it
may be easier to describe one or more of the functionalities of
a given set of flows by only referencing a limited number of
network elements. It should be appreciated that communica-
tion system 10 (and its techniques) are readily scalable and,
further, can accommodate a large number of components, as
well as more complicated/sophisticated arrangements and
configurations. Accordingly, the examples provided should
not limit the scope or inhibit the broad techniques of commu-
nication system 10, as potentially applied to a myriad of other
architectures.

US 9,338,209 B1

11

It is also important to note that the steps in the preceding
FIGURES illustrate only some of the possible scenarios that
may be executed by, or within, communication system 10.
Some of these steps may be deleted or removed where appro-
priate, or these steps may be modified or changed consider-
ably without departing from the scope of the present disclo-
sure. In addition, a number of these operations have been
described as being executed concurrently with, or in parallel
to, one or more additional operations. However, the timing of
these operations may be altered considerably. The preceding
operational flows have been oftered for purposes of example
and discussion. Substantial flexibility is provided by commu-
nication system 10 in that any suitable arrangements, chro-
nologies, configurations, and timing mechanisms may be pro-
vided without departing from the teachings of the present
disclosure.

It should also be noted that many of the previous discus-
sions may imply a single client-server relationship. In reality,
there is a multitude of servers in the delivery tier in certain
implementations of the present disclosure. Moreover, the
present disclosure can readily be extended to apply to inter-
vening servers further upstream in the architecture, though
this is not necessarily correlated to the ‘m’ clients that are
passing through the ‘n’ servers. Any such permutations, scal-
ing, and configurations are clearly within the broad scope of
the present disclosure.

Numerous other changes, substitutions, variations, alter-
ations, and modifications may be ascertained to one skilled in
the art and it is intended that the present disclosure encompass
all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended
claims. In order to assist the United States Patent and Trade-
mark Office (USPTO) and, additionally, any readers of any
patent issued on this application in interpreting the claims
appended hereto, Applicant wishes to note that the Applicant:
(a) does not intend any of the appended claims to invoke
paragraph six (6) of 35 U.S.C. section 112 as it exists on the
date of the filing hereof unless the words “means for” or “step
for” are specifically used in the particular claims; and (b) does
not intend, by any statement in the specification, to limit this
disclosure in any way that is not otherwise reflected in the
appended claims.

What is claimed is:

1. A method, comprising:

receiving media from an input;

gathering metadata from a plurality of media stream rep-

resentations that are provided by the input;

creating one or more metadata segments, wherein each of

the metadata segments corresponds to one of the plural-
ity of media stream representations;

combining the metadata segments into an independently

fetchable metadata track;
advertising the metadata track in a manifest file provided to
a client device; and

making at least a portion of the metadata track available to
the client device, wherein the portion of the metadata
track is provided separate from the manifest file,

wherein the metadata track comprises per-segment size
and quality information for each of the media stream
representations for use by the client device in selecting
one of the media stream representations.

2. The method of claim 1, wherein the metadata track is
provided in a system cache or a Web server.

3. The method of claim 1, further comprising:

delaying at least a portion of media to be consumed by the

client device, as particular metadata of the metadata
track is made available to the client device.

20

30

35

40

45

50

60

12

4. The method of claim 1, wherein the manifest file
includes information to be used by the client device to iden-
tify particular metadata for a particular media stream.

5. The method of claim 1, wherein an encapsulator is used
to generate the manifest file and to generate the metadata
track.

6. The method of claim 1, further comprising:

modifying the metadata track to provide guidance to the

client device to trigger a behavior from the client device.

7. The method of claim 1, wherein an encapsulator modi-
fies the metadata track to relay to the client device that certain
network resources have become limited or available.

8. The method of claim 1, wherein an encapsulator modi-
fies the metadata track in order to indicate to the client device
that a particular media stream is unavailable for a certain
period of time.

9. The method of claim 1, wherein an encapsulator can
identify size metrics associated with a plurality of media
stream representations based on the input it receives.

10. The method of claim 1, wherein quality information
may be provided as part of the input, and wherein at least a
portion of the quality information is provided in the metadata
track.

11. The method of claim 1, wherein fetching activities
associated with the metadata track occurs in a substantially
parallel fashion to fetching activities associated with access-
ing one or more media segments associated with a particular
media stream.

12. The method of claim 1, wherein the manifest file
includes an enumeration of'an adaptation set of media profiles
available to the client device, and wherein the adaptation set
of'media profiles are associated with particular media streams
being received at an encapsulator.

13. The method of claim 1, wherein multiple metadata
tracks are made available for access by the client device, and
wherein the multiple metadata tracks correspond to multiple
media streams.

14. One or more non-transitory tangible media that
includes code for execution and when executed by a processor
operable to perform operations comprising:

receiving media from an input;

gathering metadata from a plurality of media stream rep-

resentations that are provided by the input;

creating one or more metadata segments, wherein each of

the metadata segments corresponds to one of the plural-
ity of media stream representations;

combining the metadata segments into an independently

fetchable metadata track;
advertising the metadata track in a manifest file provided to
a client device; and

making at least a portion of the metadata track available to
the client device, wherein the portion of the metadata
track is provided separate from the manifest file,

wherein the metadata track comprises per-segment size
and quality information for each of the media stream
representations for use by the client device in selecting
one of the media stream representations.

15. The non-transitory tangible media of claim 14, wherein
the metadata track is provided in a system cache or a Web
server.

16. The non-transitory tangible media of claim 14, the
operations further comprising:

delaying at least a portion of media to be consumed by the

client device, as particular metadata of the metadata
track is made available to the client device.

US 9,338,209 B1

13

17. The non-transitory tangible media of claim 14, wherein
the manifest file includes information to be used by the client
device to identify particular metadata for a particular media
stream.

18. The non-transitory tangible media of claim 14, the
operations further comprising:

modifying the metadata track to provide guidance to the

client device to trigger a behavior from the client device.

19. A network element, comprising:

a processor; and

a memory, wherein the network element is configured to:

receive media from an input;
gather metadata from a plurality of media stream repre-
sentations that are provided by the input;

create one or more metadata segments, wherein each of

the metadata segments corresponds to one of the plu-
rality of media stream representations;

10

15

14

combine the metadata segments into an independently
fetchable metadata track;
advertise the metadata track in a manifest file provided
to a client device; and
make at least a portion of the metadata track available to
the client device, wherein the portion of the metadata
track is provided separate from the manifest file,
wherein the metadata track comprises per-segment size
and quality information for each of the media stream
representations for use by the client device in select-
ing one of the media stream representations.
20. The network element of claim 19, wherein the network
element is further configured to:
delay at least a portion of media to be consumed by the
client device, as particular metadata of the metadata
track is made available to the client device.

#* #* #* #* #*

